← Return to the Publications page

Inscopix Publications

GLP-1 increases preingestive satiation via hypothalamic circuits in mice and humans

Science

Authors: Kyu Sik Kim, Joon Seok Park, Eunsang Hwang, Min Jung Park, Hwa Yun Shin, Young Hee Lee, Kyung Min Kim, Laurent Gautron, Elizabeth Godschall, Bryan Portillo, Kyle Grose, Sang-Ho Jung, So Lin Baek, Young Hyun Yun, Doyeon Lee, Eunseong Kim, Jason Ajwani, Seong Ho Yoo, Ali D. Güler, Kevin W. Williams, Hyung Jin Choi
Publication: Science
Date: June 27, 2024
Link to article: https://www.science.org/doi/10.1126/science.adj2537

Abstract

Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are effective antiobesity drugs. However, the precise central mechanisms of GLP-1RAs remain elusive. We administered GLP-1RAs to patients with obesity and observed a heightened sense of preingestive satiation. Analysis of human and mouse brain samples pinpointed GLP-1 receptor (GLP-1R) neurons in the dorsomedial hypothalamus (DMH) as candidates for encoding preingestive satiation. Optogenetic manipulation of DMHGLP-1R neurons caused satiation. Calcium imaging demonstrated that these neurons are actively involved in encoding preingestive satiation. GLP-1RA administration increased the activity of DMHGLP-1R neurons selectively during eating behavior. We further identified that an intricate interplay between DMHGLP-1R neurons and neuropeptide Y/agouti-related peptide neurons of the arcuate nucleus (ARCNPY/AgRP neurons) occurs to regulate food intake. Our findings reveal a hypothalamic mechanism through which GLP-1RAs control preingestive satiation, offering previously unexplored neural targets for obesity and metabolic diseases.

Scroll to Top