Abstract
Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From “time cells” in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity.