Abstract
Dopamine neurons (DANs) in the substantia nigra pars compacta (SNc) have been related to movement vigor, and loss of these neurons leads to bradykinesia in Parkinson’s disease. However, it remains unclear whether DANs encode a general motivation signal or modulate movement kinematics. We imaged activity of SNc DANs in mice trained in a novel operant task which relies on individual forelimb movement sequences. We uncovered that a similar proportion of SNc DANs increased their activity before ipsi- vs. contralateral forelimb movements. However, the magnitude of this activity was higher for contralateral actions, and was related to contralateral but not ipsilateral action vigor. In contrast, the activity of reward-related DANs, largely distinct from those modulated by movement, was not lateralized. Finally, unilateral dopamine depletion impaired contralateral, but not ipsilateral, movement vigor. These results indicate that movement-initiation DANs encode more than a general motivation signal, and invigorate kinematic aspects of contralateral movements.